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Abstract

This paper addresses the task of estimating the 6D pose

of a known 3D object from a single RGB-D image. Most

modern approaches solve this task in three steps: i) Com-

pute local features; ii) Generate a pool of pose-hypotheses;

iii) Select and refine a pose from the pool. This work focuses

on the second step. While all existing approaches gener-

ate the hypotheses pool via local reasoning, e.g. RANSAC

or Hough-voting, we are the first to show that global rea-

soning is beneficial at this stage. In particular, we for-

mulate a novel fully-connected Conditional Random Field

(CRF) that outputs a very small number of pose-hypotheses.

Despite the potential functions of the CRF being non-

Gaussian, we give a new and efficient two-step optimiza-

tion procedure, with some guarantees for optimality. We

utilize our global hypotheses generation procedure to pro-

duce results that exceed state-of-the-art for the challenging

“Occluded Object Dataset”.

1. Introduction
The task of estimating the 6D pose of texture-less objects

has gained a lot of attention in recent years. From an appli-

cation perspective this is probably due to the growing inter-

est in industrial robotics, and in various forms of augmented

reality scenarios. From an academic perspective the dataset

of Hinterstoisser et al. [10] marked a milestone, since re-

searchers started to benchmark their efforts and progress in

research started to be more measurable. In this work we

focus on the following task. Given an RGB-D image of a

3D scene, in which a known 3D object is present, i.e. its 3D

shape and appearance is known, we would like to identify

the 6D pose (3D translation and 3D rotation) of that object.

Let us consider an exhaustive-search approach to this

problem. We generate all possible 6D pose hypotheses, and

for each hypothesis we run a robust ICP algorithm [2] to

estimate a robust geometric fit of the 3D model to the un-

derlying data. The final ICP score can then be used as the

objective function to select the final pose. This approach
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Figure 1. Motivation. Given an RGB-D input image (left) we aim

at finding the 6D pose of a given object, despite it being strongly

occluded (see zoom). Here our result (green) is correct, while

Krull et al. [19] outputs an incorrect pose (red). The key concept

of this work is to have a global, and hence powerful, geometric

check, in the beginning of the pose estimation pipeline. This is

in stark contrast to local geometric checks performed by all other

methods. In a first step, a random forest predicts for each pixel

a set of three possible object coordinates, i.e. dense continuous

part labeling of the object (middle). Given this, a fully-connected

pairwise Conditional Random Field (CRF) infers globally those

pixels which are consistent with the 6D object pose. We refer to

those pixels as pose-consistent. The final pose is derived from

these pose-consistent pixels via an ICP-variant.

has two great advantages: (i) It considers all hypotheses; (ii)

It uses a geometric error to prune all incorrect hypotheses.

Obviously, this approach is infeasible from a computational

perspective, hence most approaches generate first a pool of

hypotheses and use a geometrically motivated scoring func-

tion to select the right pose, which can be refined with ro-

bust ICP if necessary. Table 1 lists five recent works with

different strategies for “hypotheses generation” and “geo-

metric selection”. The first work by Drost et al. [5], and

recently extended by Hinterstoisser et al. [11], has no geo-

metric selection process, and generates a very large number

of hypotheses. The pool of hypotheses is put into a Hough-

space and the peak of the distribution is found as the final

pose. Despite its simplicity, the method achieves very good

results, especially on the “Occluded Object Dataset”1, i.e.

where objects are subject to strong occlusions. We conjec-

ture that the main reason for its success is that it generates

1http://cvlab-dresden.de/iccv2015-occlusion-challenge/
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Method
Intermediate

Representation

Hypotheses

Generation

Average Number

of Hypotheses

Hypotheses

Selection

Hypotheses

Refinement

Run

Time

Drost et al. [5]

Hinterstoisser et al. [11]

Dense Point

Pair Features

All local pairs

(large neighbourhood)
∼ 20.000

Sub-optimal

search
ICP 0.4s

Zach et al. [33]
multiple object

coordinates

All local triplets

with geometric check
2.000

Optimal w.r.t.

PDA
PDA 0.5s

Brachmann et al. [3]
multiple object

coordinates

Sampling triplets

with geometric check
210

Optimal w.r.t.

Energy

ICP

variant
2s

Krull et al. [19]
multiple object

coordinates

Sampling triplets

with geometric check
210

Optimal w.r.t.

CNN

ICP

variant
10s

Our
multiple object

coordinates

Fully-connected CRF

with geometric check
0-10

Optimal w.r.t.

ICP variant

ICP

variant
1-3s

Table 1. A broad categorization of six different 6D object pose estimation methods with respect to four different computational steps:

(a) Intermediate representation, (b) Hypotheses generation, (c) Hypotheses selection, (d) Hypotheses refinement, (e) Runtime. The key

difference between the methods is marked in red: the number of generated hypotheses. We clearly generate least amount of hypotheses.

For this we run an CRF-based hypotheses generation method which is more time-consuming and complex than in other approaches. Please

note that our overall runtime is competitive. On the other hand, since we have fewer hypotheses, we can afford a more expensive ICP-

like procedure to optimally select the best hypothesis. We show that we achieve results which are superior to all other methods on the

challenging “Occluded Object Dataset”. (Note PDA stands for “projective data association”.)

hypotheses from all local neighborhoods in the image. Es-

pecially for objects that are subject to strong occlusions, it is

important to predict poses from as local information as pos-

sible. The other three approaches [3, 19, 33] use triplets,

and are all similar in spirit. In a first step they compute for

every pixel one, or more, so-called object coordinates, a 3D

continuous part-label on the given object (see Fig. 1 right).

Then they collect locally triplets of points, in [33] these are

all local triplets and in [3, 19] they are randomly sampled

with RANSAC. For each triplet of object coordinates they

first perform a geometry consistency check (see [3, 19, 33]

for details2), and if successful, they compute the 6D object

pose, using the Kabsch algorithm. Due to the geometric

check it is notable that the amount of generated hypotheses

is substantially less for these three approaches [3, 19, 33]

than for the previously discussed [5, 11]. Due to this reason,

the methods [3, 19, 33] can run more elaborate hypotheses

selection procedures to find the optimal hypothesis. In [33]

this is done via a so-called robust “projective data associ-

ation” procedure, in [3] via a hand-crafted, robust energy,

and in [19] via a CNN that scores every hypothesis. Our

work is along the same direction as [3, 19, 33], but goes

one step forward. We present a novel, and more power-

ful, geometric check, which results in even fewer hypothe-

ses (between 0-10). For this reason we can also afford to

run a complex ICP-like scoring function for selecting the

best hypothesis. Since we achieve results that are better

than state-of-the-art on the challenging occlusion dataset,

our pool of hypotheses has at least the same quality as the

larger hypotheses pool of all other methods. Our geomet-

ric check works roughly as follows. For each pair of object

2For instance, the geometric check of [3, 19] determines whether there

exists a rigid body transformation of the triplets of 3D points, given by the

depth image, for the triplet of 3D points from the object coordinates.

coordinates a geometry-consistency measure is computed.

We combine a large number of pairs into a fully-connected

Conditional Random Field (CRF) model. Hence, in con-

trast to existing work we perform a global geometry check

and not a local one. It is important to note that despite hav-

ing a complex CRF, we are able to have a runtime which

is competitive with other methods, even considerably faster

than [19]. As a side note, we also achieve these state-of-the-

art results with little amount of learning, in contrast to e.g.

[19].

Our contributions are in short:

• We are the first to propose a novel, global geome-

try check for the task of 6D object pose estimation. For

this we utilize a fully-connected Conditional Random Field

(CRF) model, which we solve efficiently, although its pair-

wise costs are non-Gaussian and hence efficient approxima-

tion techniques like [18] cannot be utilized.

• We give a new theoretical result which is used to com-

pute our solutions. We show that for binary energy min-

imization problems, a (partial) optimal solution on a sub-

graph of the graphical model can be used to find a (partial)

optimal solution on the whole graphical model. Proper con-

struction of such subgraphs allows to drastically reduce the

computational complexity of our method.

• Our approach achieves state-of-the-art results on the

challenging “Occluded Object Dataset”, in reasonable run-

time (1-3s).

2. Related Work

The topic of object detection and pose estimation has

been widely researched in the past decade. In the brief

review below, we focus only on recent works and split

them into three categories. We will omit the methods

[3, 19, 5, 33, 11] since they were already discussed in the
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previous section.

Sampling-Based Methods. Sparse feature based meth-

ods ([8, 20]) have shown good results for accurate pose es-

timation. They extract points of interest and match them

based on a RANSAC sampling scheme. With the shift of the

application scenario into robotics their popularity declined

since they rely on texture. Shotton et al. [25] addressed the

task of camera re-localization by introducing the concept

of scene coordinates. They learn a mapping from camera

coordinates to world coordinates and generate camera pose

hypotheses by random sampling. Most recently Phillips et

al. [21] presented a method for pose estimation and shape

recovery of transparent objects where a random forest is

trained to detect transparent object contours. Those edge

responses are clustered and random sampling is employed

to find the axis of revolution of the object. Instead of ran-

domly selecting individual pixels we will use the entirety of

the image to find pose hypotheses.

Non-Sampling-Based Methods. An alternative to random

sampling of pose hypotheses are Hough-voting based meth-

ods where all pixels cast a vote into a quantized prediction

space (e.g. 2D object center and scale). The cell with the

majority of votes is taken as the winner. [7, 26] used a

Hough-voting-scheme for 2D object detection and coarse

pose estimation. Tejani et al. [30] proposed an iterative

latent-class Hough-voting-scheme for object classification

and 3D pose estimation with RGB-D data as input. Tem-

plate based methods [10, 9, 13] have also been applied to

the task of pose estimation. To find the best match the tem-

plate is scanned across the image and a distance metric is

computed at each position. Those methods are harmed by

clutter and occlusion which disqualifies them to be applied

to our scenario. In our approach each pixel is processed, but

instead of them voting individually we find pose-consistent

pixel-sets by global reasoning.

Pose Estimation using Graphical Models. In an older

piece of work the pose of object categories was found in

images either in 2D [32] or in 3D [12]. They also use

the key concept of discretized object coordinates for object

detection and pose estimation. The MRF-inference stage

for finding pose-consistent pixels is closely related to ours.

Foreground pixels are accepted when the layout consistency

constraint (where layout consistency means that neighbor-

ing pixels should belong to the same part) is satisfied. How-

ever since the shape of the object is unknown, the pairwise

terms are not as strong as in our case. The closest related

work to ours is Bergholdt et al. [1]. They use the same

strategy of discriminatively modeling the local appearance

of object parts and globally inferring the geometric con-

nections between them. To detect and find the pose of ar-

ticulated objects (faces, human spines, human poses) they

extract feature points locally and combine them in a prob-

abilistic, fully-connected, graphical model. However they

rely on a exact solution to the problem while a partial opti-

mal solution is sufficient in our case. We therefore employ

a different approach to solve the task.

3. Method - Overview

Before we describe our work in detail, we will intro-

duce the task of 6D pose estimation formally and provide

a high-level overview of our method. The objective is to

find the 6D pose Hc = [Rc|tc] of object c, with Rc (3 × 3
matrix) describing a rotation around the object center and

tc (3 × 1 vector) representing the position of the object in

camera space. The pose Hc transforms each point in object

coordinate space y ∈ Y ⊆ R
3 into a point in camera space

x ∈ X ⊆ R
3.

Our algorithm consists of three stages (see Fig. 2). In the

first stage (Sec. 3.1) we densely predict object probabilities

and object coordinates using a random forest. Instead of

randomly sampling pose hypotheses as e.g. in [3] we use a

graphical model to globally reason about hypotheses inliers.

This second stage is described in Section 3.2 roughly and in

Section 4 in detail. In the final stage (Sec. 3.3) we refine and

rank our pose hypotheses to determine the best estimate.

3.1. Random Forest

We use the random forests from Brachmann et al. [3].

Each tree T of the forest T predicts for each pixel an object

probability and an object coordinate. As mentioned above,

an object coordinate corresponds to a 3D point on the sur-

face of the object. In our case we have T = 3. As in [3] the

object probabilities from multiple trees that are combined

to one value using Bayes rule. This means that for a pixel i
and object c we have the object probability pc(i). The ob-

ject probabilities can be seen as a soft segmentation mask.

3.2. Global Reasoning

In general, to estimate the pose of a rigid object, a mini-

mal set of three correspondences between 3D points on the

object and in the 3D scene is required [14]. The 3D points

on the object, i.e. in the object coordinate system, are pre-

dicted by the random forest. One possible strategy is to

generate such triplets randomly by RANSAC [6], as pro-

posed in [3]. However, this approach has a serious draw-

back: the number of triples which must be generated by

RANSAC in order to have at least a correct triple with the

probability of 95%, is very high. Assuming that n out of N
pixels contain correct correspondences, the total number of

samples is
log(1−0.95)

log(1−(1−n/N)3) . For n/N = 0.005, which cor-

responds to a state-of-the-art local classifier, this constitutes

∼ 24.000.000 RANSAC iterations. Therefore, we address

this problem with a different approach. Our goal is to as-

sign to each pixel either one of the possible correspondence

candidates, or an “outlier” label. We achieve this by for-

malizing a graphical model where each pixel is connected
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Figure 2. Our pipeline: Given an RGB-D image (a) a random forest provides two predictions: object probabilities and object coordinates

(b). In a second stage our novel, fully-connected CRF infers pose-consistent pixel-sets (see zoom) (c). In the last stage, pose hypotheses

given by pose-consistent pixels of the CRF are refined and scored by an ICP-variant. The pose with the lowest score is given as output (d).

to every other pixel with a pairwise term. The pairwise term

encodes a geometric check which is defined later. The op-

timization problem of this graphical model is discussed in

Sec. 4.2.

3.3. Refinement and Hypothesis Scoring

The output of the optimization of the graphical model is

a collection of pose-consistent pixels where each of those

pixels has a unique object coordinate. The collection is

clustered into sets. In the example in Fig. 2(c) there are

two sets (red, green). Each set provides one pose hypothe-

sis. These pose hypotheses are refined and scored using our

ICP-variant. In order to be robust to occlusion we only take

the pose-consistent pixels within the ICP [2, 22] for fitting

the 3D model.

4. Method - Graphical Model

After a brief introduction to graphical models (Sec. 4.1),

we define our graphical model used for object pose estima-

tion (Sec. 4.2). This is a fully-connected graph where each

node has multiple labels, here 13. The globally optimal so-

lution of this problem gives a pose-consistent (inlier) label

to only those pixels that are part of the object, ideally. Since

our potential functions are non-Gaussian the optimization

problem is very challenging. We solve it approximately, but

very efficiently, in a two stage procedure. The first stage

conservatively prunes those pixels that are likely not inliers.

This is done with a sparsely connected graph and TRW-S

[16] as inference procedure (Sec. 4.3). The second stage

(Sec. 4.4 - 4.6) describes an efficient procedure for solving

the problem with only the inlier candidates remaining. We

prove that by splitting this problem further into subprob-

lems, in a proper way, a (partial) solution to one of these

subproblems is guaranteed to be the (partial) optimal solu-

tion of the whole second stage problem. We use the found

solutions to the subproblems to generate pose hypotheses.

4.1. Energy Minimization

Let G = (V,E) be an undirected graph with a finite

set of nodes V and a set of edges E ∈
(

V
2

)

. With each

node u ∈ V we associate a finite set of labels Lu. Let
∏

stand for the Cartesian product. The set L =
∏

u∈V Lu is

called the set of labelings. Its elements l ∈ L, called label-

ings, are vectors l = (lu ∈ Lu : u ∈ V ) with |V | coordi-

nates, where each one specifies a label assigned to the cor-

responding graph node. For each node a unary cost function

θu : Lu → R is defined. Its value θu(lu), lu ∈ Lu specifies

the cost to be paid for assigning label lu to node u. For each

two neighboring nodes {u, v} ∈ E a pairwise cost function

θuv : Lu × Lv → R is defined. Its value θuv(lu, lv) speci-

fies compatibility of labels lu and lv in the nodes u and v,

respectively. The triple (G,L, θ) defines a graphical model.

The energy EV (l) of a labeling l ∈ L is a total sum of

the corresponding unary and pairwise costs

EV (l) :=
∑

u∈V

θu(lu) + β
∑

uv∈E

θuv(lu, lv) . (1)

Finding a labeling with the lowest energy value constitutes

an energy minimization problem. Although this problem is

NP-hard, in general, a number of efficient approximative

solvers exist, see [15] for a recent review.

4.2. Pose Estimation as Energy Minimization

Consider the following energy minimization problem:

• The set of nodes is the set of pixels of the input image,

i.e., each graph node corresponds to a pixel. To be precise,

we scale down our image by a factor of two for faster pro-

cessing, i.e. each graph node corresponds to 2× 2 pixels.

• Number of labels in every node is the same. The la-

bel set Lu := L̂u ∪ {o} consists of two parts, a subset L̂u

of correspondence proposals and a special label o. In total,

each node is assigned 13 labels: The forest T provides 3
candidates for object coordinates in each pixel, 2× 2 pixels

result in 12 labels, and the last label is the “outlier”.
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Figure 3. Visualization of our binary potential as defined in Eq. 2.

Each label from the subset L̂u corresponds to a 3D co-

ordinate on the object. Therefore, we will associate such

labels lu with 3D vectors and assume vector operations to

be well-defined for them. Unary costs θu(lu) for these la-

bels are set to (1− pc(u))α, where pc(u) is defined in Sec-

tion 3.1 and α is a hyper-parameter of our method. We will

call the labels from L̂u inlier labels or simply inlier.

The special label o denotes a situation in which the cor-

responding node does not belong to the object, or none of

the labels in L̂u predicts a correct object coordinate. We

call o the “outlier label”. Unary costs for the outlier labels

are: θu(o) =
∑

pc(u)α
12 , u ∈ V .

Let us define pose-consistent pixels. If a node, compris-
ing of 2 × 2 pixels, is an inlier then the pixel with the re-
spective label is defined as pose-consistent. The remaining
three pixels are not pose-consistent and are ignored in the
hypotheses selection stage. Also all pixels for which the
node has an outlier label are not pose-consistent.

• Let xu and xv be 3D points in the camera coordinate
system, corresponding to the nodes u and v in the scene.

For any two inlier labels lu ∈ L̂u and lv ∈ L̂v we assign the
pairwise costs as follows

θuv(lu, lv) =

{

∣

∣

∣
‖lu − lv‖ − ‖xu − xv‖

∣

∣

∣
, ‖xu − xv‖ ≤ D

∞, otherwise.
(2)

That is, θuv(lu, lv) is equal to the absolute difference of

distances between points lu, lv on the object and xu, xv in

the scene (see Fig. 3) if the latter difference does not exceed

the object size D.

Additionally, we define θuv(lu, o) = θuv(o, lv) = γ
for lu ∈ Lu, lv ∈ Lv . Here γ is another hyper-parameter

of our method. A sensible setting is γ = 0, however, we

will choose γ > 0 in parts of the optimization (see details

below). We also assign θuv(o, o) = 0, for all {u, v} ∈ E.

• The graph G is fully-connected, i.e., any two nodes

u, v ∈ V are connected by an edge {u, v} ∈ E.

Given a labeling l ∈ L we will speak about inlier and

outlier nodes as those labeled with inlier or outlier labels,

respectively.

The energy of any labeling is a sum of (i) the total unary

costs for inlier labels, (ii) total geometrical penalty of the

inlier labels, and (iii) total cost for the outlier labels. A la-

beling with the minimal energy corresponds to a geometri-

cally consistent subset of coordinate correspondences with

a certain confidence for the local classifiers. We believe,

there are such hyper-parameter settings that these coordi-

nates would provide approximately correct object poses.

Why a fully-connected graph? At the first glance, one

could reasonably simplify the energy minimization prob-

lem described above by considering a sparse, e.g. grid-

structured graph. In this case the pairwise costs would

control not all pairs of inlier labels, but only a subset of

them, which may seem to be enough for a selection of

inliers defining a good quality correspondence. Unfortu-

nately, such a simplification has a serious drawback, nicely

described in [1]: As soon as the graph is not fully con-

nected, it tends to select an optimal labeling, which con-

tains separated “islands” of inlier nodes, connecting to other

“inlier-islands” only via outlier nodes. Such a labeling may

contain geometrically independent subsets of inlier labels,

which may “hallucinate” the object in different places of

the image. Moreover, from our experience many of such

“islands” contain less than three nodes, which increases the

probability for pairwise geometrical costs to be low just by

chance.

Concerning energy minimization. Our graph contains

320 × 240 nodes which corresponds to the size of our

discretized input image. Solving an energy minimization

problem on such a fully-connected graph, even approxi-

mately, is in general infeasible if Gaussian potentials (like

e.g. [18]) cannot be applied. Therefore, we suggest a

problem-specific, but very efficient two-stage procedure for

generating approximative solutions of the considered prob-

lem. In a first stage (Sec. 4.3) we reduce the size of the

optimization problem, in the second (Sec. 4.4) we generate

solution candidates.

Graph Matching problem (see e.g. [4, 27]) is another

formalism used to find true correspondences from a large

number of hypothetic correspondences using geometric

constraints. However, one key aspect of graph matching

is that one discrete feature (e.g. discrete object coordinate

of a 3D model) can only match to one other discrete fea-

ture (e.g. discrete object coordinate candidate in the image

(output from a decision tree)). Our problem formulation, in

contrast, has continuous object coordinates.

4.3. Stage One: Problem Size Reduction

Despite what is discussed above about having a fully-

connected graph, we used a sparse graphical model to re-

duce the number of possible correspondence candidates. An

optimal labeling of this sparse model provides us with a set

of inlier nodes, which hopefully contain the true inliers. On

the second stage of our optimization procedure, described

below, we build several fully-connected graphs from these

nodes. For the sparse graph we use the following neighbor-

hood structure: we connect each node to 48 closest nodes

excluding the closest 8. We believe that the distance mea-
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fully-connected graph

of inlier nodes (black)
submodel 1 submodel 2

Figure 4. Illustrating Optimization Stage Two. (Left) the black

pixels are all those pixels which were labeled as inliers, (poten-

tially pose-consistent) in the first stage of the optimization. The

first stage is opportunistic in the sense that wrong inliers may still

be present. The goal of the second stage is to determine exactly

the true inliers, from which we will determine the final pose. For

this we have to solve the fully-connected graph shown, where each

pixel has two labels, being an inlier (1) or outlier (0). Here the red

links mark pairwise terms which contain ∞ values. Unfortunately,

state of the art solvers struggle with this problem, due to the pres-

ence of red links. We solve this by solving two (in practice many

more) submodels (middle, right) that contain no red links. Each

sub-problem produces a partial optimal solution {0, 1, ?}, where

nodes that do not belong to the submodel are labeled 0. We can

now guarantee that one of the partial optimal solution is the partial

optimal solution of the full graph shown on the left.

sure between the closest nodes is very noisy.

We assign a positive value to the parameter γ penalizing

transitions between inlier and outlier labels. This decreases

the number of “inlier islands” by increasing the cost of the

transition. We approximately solved this sparse problem

with the TRW-S algorithm [16], which we run for 10 itera-

tions. We found the recent implementation [24] of this al-

gorithm to be up to 8 times faster than the original one [16]

for our setting.

4.4. Stage Two: Generation of Solution Candidates

Fully-Connected Graphical Model. As mentioned above,

in the second stage we consider a fully-connected graphical

model, where the node set contains only inlier nodes from

the solution of the sparse problem. Moreover, to further

reduce the problem size, we reduce the label set in each

node to only two labels Lu := {0, 1}, where the label 0
corresponds to an outlier and the label 1 corresponds to the

label associated with the node in the solution of the sparse

problem. The unary and pairwise costs are assigned as be-

fore, but the hyper-parameters α, β and γ are different. In

particular γ = 0 since there is no reason to penalize tran-

sitions between inlier and outlier on this stage. Further, we

will refer to (G,L, θ) defined above, as to master (fully-

connected) model F .

Although such problems usually have a much smaller

size (the solution of the sparse problem typically contains

20 to 500 inliers) our requirements to a potential solver are

much higher at this stage. Whereas in the first stage we re-

quire only that the set of inlier nodes contains enough of

correct correspondences, the inliers obtained on the second

stage must be all correct (have small geometrical error). In-

correct correspondences may deteriorate the final pose esti-

mation accuracy. Therefore the quality of the solution be-

comes critical on this stage. Although problems of this size

are often feasible for exact solvers, obtaining an exact so-

lution may take multiple minutes or even hours. Therefore,

we stick to the methods delivering only a part of an optimal

solution (partial optimal labeling), but being able to do this

in a fraction of seconds, or seconds, depending on the prob-

lem size. Indeed, it is sufficient to have only three inlier to

estimate the object pose.

Partial Labeling. A partial labeling can be understood as

a vector l ∈ {0, 1, ?}|V | with only a subset V ′ ⊂ V of

coordinates assigned a value 0 or 1. The rest of coordinates

take a special value ? = “unlabeled”. The partial labeling

is called partial optimal labeling, if there exists an optimal

labeling l∗ ∈ L such that l∗u = lu for all u ∈ V ′.

There are a number of efficient approaches addressing

partial optimality (obtaining partial optimal labelings) for

discrete graphical models for both multiple [28, 24] and

two-label cases [17, 31]. We refer to [23] for an extensive

overview. For problems with two labels the standard par-

tial optimality method is QPBO [17], which we used in our

experiments.

All partial optimality methods are based on sufficient op-

timality conditions, which have to be fulfilled for a partially

optimal labeling. However, as it directly follows from [29,

Prop.1], these conditions can hardly be fulfilled for label lu
in a node u, if for some neighboring node v : {u, v} ∈ E
the difference between the smallest pairwise potential “at-

tached” to the label lu, minlv∈Lv
θuv(lu, lv) and the largest

one maxlv∈Lv
θuv(lu, lv) is very large. In our setting this

is the case, e.g., if for two nodes u and v (connected by

an edge as any pair in a fully-connected graph) it holds

‖xu − xv‖ > D, see (2). Existence of such infinite costs

leads to deterioration of the QPBO result: in many cases

the returned partial labeling contains less than three labeled

nodes, which is not sufficient for pose estimation.

To deal with this issue, we propose a novel method to

find multiple partial labelings: We consider a set of induced

submodels (see Definition 1 below) and find a partial opti-

mal solution for each of them. We guarantee, however, that

at least one of these partial labelings is a partial optimal

one for the whole graphical model and not only for its sub-

model. Considering submodels allows to significantly re-

duce the number of node pairs {u, v} with θuv(1, 1) = ∞.

In its turn, it leads to many more nodes being marked as

partially optimal by QPBO and therefore, provides a basis

for a high quality pose reconstruction (see Fig. 4).

The theoretical background for the method is provided

in the following subsection.
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4.5. On Optimality of Subproblem Solutions for Bi­
nary Energy Minimization

Let G = (V,E) be a graph and V ′ ⊂ V be a subset

of its nodes. A subgraph G′ = (V ′, E′) is called induced

w.r.t. V ′, if E′ = {{u, v} ∈ E : u, v ∈ V ′} contains all

edges of E connecting nodes within V ′.

Definition 1. Let M = (G,L, θ) be a graphical model with

G = (V,E) and L =
∏

u∈V Lu. A graphical model M ′ =
(G′,L′, θ′) is called induced w.r.t. V ′ ⊆ V if

• G′ is an induced subgraph of G w.r.t. V ′.

• L′ =
∏

u∈V ′ Lu.

• θ′u = θu for u ∈ V ′ and θ′uv = θuv for {u, v} ∈ E′.

Proposition 1. Let M = (G,L, θ) be a graphical model,

with G = (V,E), L = {0, 1}|V | and θ such that

θuv(0, 1) = θuv(1, 0) = θuv(0, 0) = 0 ∀{u, v} ∈ E . (3)

Let l̂ ∈ L be an energy minimizer of M and

V̂ := {u ∈ V : l̂u = 1}.

Let M ′ = (G′,L′, θ′) be an induced model w.r.t. some

V ′ ⊇ V̂ and l′ be an energy minimizer of M ′. Then there

exists a minimizer l∗ of energy of M , such that l′u = l∗u for

all u ∈ V ′.

Proof. EV (l̂) = EV ′(x̂V ′) + EV \V ′(x̂V \V ′) ≥ E(l′) +
EV \V ′(0). Since xV \V ′ = 0 due to (3), the equality holds.

The inequality holds by definition of l′. Let us consider the

labeling l∗ := (l′, 0) constructed by concatenation of l′ on

V ′ and 0 on V \V ′. Its energy is equal to the right-hand-

side of the expression, due to (3). Since l̂ is an optimal

labeling, the inequality holds as equality and the labeling l∗

is optimal as well. It finalizes the proof.

Corollary 1. Let under condition of Proposition 1 l′ be a

partial optimal labeling for M ′. Then it is partial optimal

for M .

Note, since pairwise costs of any two-label (pairwise)

graphical model can be easily transformed to the form (2),

see e.g. [17], Proposition 1 is generally applicable to all

such models.

4.6. Obtaining Candidates for Partial Optimal La­
beling

To be able to use Proposition 1 we need a way to char-

acterize possible optimal labelings for the master model

F (defined in Section 4.4) to be able to generate possible

sets V ′ containing all inlier nodes of an optimal labeling.

Indeed, this characterization is provided by the following

proposition:

Proposition 2. Let l∗ be an optimal solution to the fully-

connected problem described above. Then for any two inlier

nodes u and v, l∗u = l∗v = 1, it holds ‖xu − xv‖ ≤ D or, in

other words, θuv(l
∗
u, l

∗
v) < ∞.

This proposition has a trivial proof: as soon as there is a

labeling with a finite energy (e.g. lu = 0 for all u ∈ V ), an

optimal labeling can not have an infinite one.

An implication of the proposition is quite clear from the

applied point of view: all inlier nodes must be placed within

a circle with a diameter equal to the maximal linear size of

the object. Combining this observation with Proposition 1,

we will generate a set of submodels, which contain all pos-

sible subsets of nodes satisfying the above condition.

A simple, yet inefficient way to generate all such sub-

models, is to go over all nodes u of the graph G and con-

struct a subproblem Mu induced by nodes, which are placed

at most at the distance D of u. A disadvantage of this

method is that one gets as many as |V | subproblems, which

leads to the increased runtime and too many almost equal

submodels. Instead, we consider all connected inlier com-

ponents obtained on the first stage as a result of the prob-

lem reduction. We remove all components with the size

less than three, because, as we found experimentally, they

mostly represent only noise. We enumerate all components,

i.e., assign a serial number to each. For each component f
we build a fully-connected submodel, which includes itself

and all components with bigger serial number within the

distance D from all nodes of f . Such an approach usually

leads to at most 20 submodels and most of them get more

than three partial optimal labels by QPBO.

Ignoring the heuristic removal of the components with

the size less than three, such a procedure is guaranteed to

provide a partial optimal solution of the whole problem, in-

dependent of the selected ordering of the components. In-

deed, let an optimal labeling include inliers from m > 1
components. Then select the component with the smallest

index out of these m ones. By construction, the correspond-

ing submodel will contain all the m components (since they

all lie within the distance D and have larger indices) and

therefore all the inliers of an optimal solution.

5. Experiments

We evaluated our method on a publicly available dataset.

We will first introduce the dataset and then the evaluation

protocol (Sec. 5.1). After that, we quantitatively compare

our work with three competitors, and also present qualita-

tive results (Sec. 5.2).

5.1. Dataset

To evaluate our method, we use the publicly available

dataset of Brachmann et al. [3], known as “Occluded Ob-

ject Dataset”3. This dataset was presented in [3] and is an

extension of [10]. They annotated the ground truth pose for

8 objects in 1214 images with various degrees of object oc-

clusions.

3http://cvlab-dresden.de/iccv2015-occlusion-challenge/
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Figure 5. Qualitative results of our method on the “Occluded Object Dataset” [3]. Results of our method are depicted as green silhouettes,

the ground truth pose is shown as a blue silhouette and results of the method by Krull et al. [19] are shown as red silhouettes. Note, since

these results shows correct poses of our method the green silhouette is on top of the blue one.

Method Our method Hinterstoisser et al.[11] Krull et al.[19] Brachmann et al.[3]

Object Scores

Ape 80.7% 81.4% 68.0% 53.1%

Can 88.5% 94.7% 87.9% 79.9%

Cat 57.8% 55.2% 50.6% 28.2%

Driller 94.7% 86.0% 91.2% 82.%

Duck 74.4% 79.7% 64.7% 64.3%

Eggbox 47.6% 65.5%* 41.5% 9.0%

Glue 73.8% 52.1% 65.3% 44.5%

Hole Puncher 96.3% 95.5% 92.9% 91.6%

Average 76.7% 76.3% 70.3% 56.6%

Table 2. Quantitative comparison of [3], [19], [11] and our approach for all objects in the challenging “Occluded Object Dataset”. *The

number for the Eggbox differs from [11] since they did not consider all images of the sequence (private e-mail exchange with the authors).

To evaluate our method we use the criteria from [10].

This means we measure the percentage of correctly esti-

mated poses for each object. To determine the quality of

an estimated pose we calculate the average distance of each

point with respect to the estimated pose and the ground truth

pose. The pose is accepted if the average distance is below

10% of the object diameter.

To find good parameters for our graphical model we cre-

ated a validation set, which we will make publicly available.

For this we annotated an additional image sequence (1235

images) of [10] containing 6 objects. The final set of pa-

rameters for stage one is α = 0.21, β = 23.1, γ = 0.0048
and stage two is α = 0.2, β = 2.0, γ = 0.0.

5.2. Results

In the following we compare to the methods of Brach-

mann et al. [3], Krull et al. [19] and to the recently pub-

lished state-of-the-art method of Hinterstoisser et al. [11].

Results are shown in Table 2. We achieve an average ac-

curacy of 76.7% over all objects, which is 0.4% better than

the current state-of-the-art method of Hinterstoisser et al.

[11]. With respect to individual objects our method per-

forms best on four objects and [11] on the other four. In

comparison with [3] and [19] we achieve an improvement

of 20.1% and 6.4% respectively. Since these two methods

use the same random forest, as we do, the benefits of us-

ing global reasoning can be seen. See Fig. 5 for qualitative

results.

6. Conclusion and Future Work

In this work we have focused on the pose-hypothesis

generation step, which is part of many pipelines for 6D ob-

ject pose estimation. For this, we introduced a novel, global

geometry check in form of a fully connected CRF. Since

this direct optimization on the CRF is hardly feasible, we

present an efficient two-step optimization procedure, with

some guarantees on optimality. There are many avenues for

future work. An obvious next step is to improve on the re-

gression procedure for object coordinates, e.g. by replacing

the random forests with a convolutional neural network.
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J. Lellmann, N. Komodakis, B. Savchynskyy, and C. Rother.

A comparative study of modern inference techniques for

structured discrete energy minimization problems. Interna-

tional Journal of Computer Vision, pages 1–30, 2015. 4

[16] V. Kolmogorov. Convergent tree-reweighted message pass-

ing for energy minimization. IEEE Transactions on Pattern

Analysis and Machine Intelligence (PAMI), 2006. 4, 6

[17] V. Kolmogorov and C. Rother. Minimizing non-submodular

functions with graph cuts-a review. IEEE Transactions

on Pattern Analysis and Machine Intelligence (PAMI),

29(7):1274–1279, 2007. 6, 7
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